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Abstract

The classification of groups of order pq is the a very useful trick which could easily be applied
to lots of problems. In fact, a direct corollary of it is that if groups of order n is unique, then
(n, φ(n)) = 1.

Indeed, one can use Sylow Theorem to solve it, but it’s too brutal and advanced. Here I’ll present
two very elementary proofs.

Theorem 1. Groups of order pq is unique (cyclic) up to isomorphism if and only if p - (q − 1), where
p < q are both primes.

This is the main theorem of this paper which will be proved later. We first need some lemma.

Lemma 1. For any finite group G, if p is the smallest prime that divides |G|, and K is a subgroup of
G such that |G : K| = p, then K is a normal subgroup of G.

Proof. Consider G acts on the left cosets of K by left multiplication. It induces a homormorphism
φ : G→ Sym(G : K).
Consider ker(φ) E G. Note that ker(φ) E K. By Isomorphism Theorem , we have

G/ker(φ) ∼= im(φ) ≤ Sym(G : K)

We have |G : ker(φ)| = |G : K||K/ker(φ)| = p|K/ker(φ)|. So p | |G : ker(φ)|. Hence p | im(φ).
On the one hand, the prime factors in im(φ) are no more than p as it’s a subgroup of Sym(G : K). On
the other hand, the prime factors in im(φ) are no less than p since G/ker(φ) ∼= im(φ). So |im(φ)| = p.
Thus, ker(φ) = K. So K E G

Lemma 2. xd ≡ 1 (mod q) has exactly d in-congruent solutions when d|(q − 1) for prime q

Proof. Firstly, in Zp, the equation xd−1 ≡ 0 (mod q) has at most d solution, while xq−1−1 ≡ 0 (mod q)
has exactly q − 1 solutions.
Since d|(q − 1), we can factorize xq−1 = xdP (x), where polynomial P (x) has degree (q − 1 − d), which
has at most (q − d− 1) solutions.
Thus, P (x) and xd − 1 must have maximun number of solutions so that (q − d − 1) + d = (q − 1) can
hold. So xd − 1 ≡ 0 (mod q) has exactly d solutions.

Lemma 3. Let G be a finite group and p is a prime dividing its order. Then np ≡ −1 mod p, where
np denotes the number of elements of order p.

Proof. Consider a subset X ⊆ Gp defined by X = {(g1, g2, . . . , gp) ∈ Gp : g1g2 · · · gp = e}. Since
|Gp| = |G|p, and |X| = |G|p−1. Let H = Cp = 〈ξ〉, consider the action of H on X by

ξ ? (g1, g2, . . . , gp) = (g2, g3, . . . , gp, g1)

This is an action, indeed, if g1g2 · · · gp = e, then g2g3 · · · gpg1 = g−1
1 eg1 = e. For any element x ∈ X,

by Orbit-Stabilizer Theorem, p = |H| = |Hx||H ? x|. Since p is prime, every orbit has to have either
size 1 or size p, also the orbits sum to |X| = |G|p−1 which is divisible by p. So the number of size 1
orbits must be divisible by p, thus at least 2. All such orbits of size 1 must be in the form (g, g, . . . , p).
In particular, apart from (e, e, . . . , e), there’s a bijection between an element of order p such a tuple.
Therefore, np ≡ −1 mod p
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Lemma 4. (p− 1) | np, where p, np are the same definition in lemma 1.

Proof. Consider the subgroups S1, S2, . . . of order p in group G. We must have Si ∩ Sj = e for i 6= j.
The result follows.

We first prove the easy direction of Theorem 1, which only requires lemma 2 and a proper counterex-
ample.

Proposition 1. For groups of order pq, if p|(q − 1), then the group cannot be determined.

Proof. By lemma 2, lp − 1 ≡ 0 (mod q) has exactly p solutions. In particular, it has a solution t 6= 1.
Consider the group representation < h, k|hp = kq = e, h−1kh = kt

(a) It’s a group of order pq. To prove this, firstly notice that we can write equivalent of each element as
hikj , 0 ≤ i < p, 0 ≤ j < q. If hakb = hckd, then ha−c = kd−b ⇒ p | (a− c)q ⇒ p | (a− c). Similarly b ≡ d
(mod q). So these pq elements are distinct.
(b) It’s non-abelian. Recall that tp − 1 ≡ 0 (mod q)
(hk)(hpk) = hp+1kt

p+1 = hp+1k2,(hpk)(hk) = hp+1kt+1. Since t 6= 1, we are done.

The other direction should use lemma 1, lemma 2 and lemma 3. See proposition 2.

Proposition 2. For groups of order pq, if p - (q− 1), then the group must be unique up to isomorphism
(i.e. cyclic).

Proof. By lemma 3, there exists subgroup H, K such that |H| = q, H =< h > and |K| = p,K =< k >.
By lemma 1, we know H is normal in G. so k−1hk = hl for some l.
We must have h = k−phkp = k−(p−1)hlkp−1 = k−(p−2)(k−1hk)lkp−2 = k−(p−1)hl
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k= . . . = kl
p

.
Thus, lp ≡ 1 (mod q). Since p - (q − 1), we must have l = 1. This is because by Bezout Theorem,
(∃x, y)xp+ y(q − 1) = 1, so l = lxp+y(q−1) ≡ (lp)x(l(q−1))y ≡ 1 (mod q).
So the group must be abelian, hence cyclic.

What about lemma 4? Well, when I first start approaching proposition 2, I used another fairly
surprising way, which is about counting the order of elements.

Proof. By lemma 3&4, we can write np = k1p− 1, nq = k2(q − 1) for some k1, k2 ∈ Z.
Suppose the group is not cyclic. Then each element has order 1,p or q. Thus

1 + k1p− 1 + k2(q − 1) ≡ 0 (mod p)

So p | k2 as p - q − 1. Clearly k2 6= 0, so k2 = p, k1 = 1
Similarly, if we write np = k3(p− 1), nq = k4q − 1, we have q | k3. So k3 = q.
Now np = pq − q = p− 1→ q = 1, which is a contradiction.

Combine Proposition 1 and Proposition 2, Theorem 1 is proved. We now show a direct corollary of
Theorem 1.

Corollary 1. For a group G with order n, if G is unique, then gcd(n, φ(n)) = 1.

Proof. Firstly, n must be square-free. Otherwise, Write n = pαm, Cp ×Cp × . . .×Cm is not isomorphic
to Cn
So write n = p1p2 . . . pm. If gcd(n, φ(n)) ≥ 1, we must have pi | (pj − 1) for some i, j.
By the above construction of non-abelian group (call it H of order pipj in the proof of proposition 1, we
know H × C n

pipj
is not isomorphic to Cn
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