Groups of Order pq

Xuanang (Shawn) Chen

November 2020

Abstract

The classification of groups of order pq is the a very useful trick which could easily be applied to lots of problems. In fact, a direct corollary of it is that if groups of order n is unique, then $(n, \phi(n)) = 1$.

Indeed, one can use Sylow Theorem to solve it, but it's too brutal and advanced. Here I'll present two very elementary proofs.

Theorem 1. Groups of order pq is unique (cyclic) up to isomorphism if and only if $p \nmid (q-1)$, where p < q are both primes.

This is the main theorem of this paper which will be proved later. We first need some lemma.

Lemma 1. For any finite group G, if p is the smallest prime that divides |G|, and K is a subgroup of G such that |G:K| = p, then K is a normal subgroup of G.

Proof. Consider G acts on the left cosets of K by left multiplication. It induces a homormorphism $\phi: G \to Sym(G:K)$.

Consider $ker(\phi) \leq G$. Note that $ker(\phi) \leq K$. By Isomorphism Theorem , we have

$$G/ker(\phi) \cong im(\phi) \le Sym(G:K)$$

We have $|G: ker(\phi)| = |G: K||^{K}/ker(\phi)| = p|^{K}/ker(\phi)|$. So $p \mid |G: ker(\phi)|$. Hence $p \mid im(\phi)$. On the one hand, the prime factors in $im(\phi)$ are no more than p as it's a subgroup of Sym(G:K). On the other hand, the prime factors in $im(\phi)$ are no less than p since $G/ker(\phi) \cong im(\phi)$. So $|im(\phi)| = p$. Thus, $ker(\phi) = K$. So $K \leq G$

Lemma 2. $x^d \equiv 1 \pmod{q}$ has exactly d in-congruent solutions when d|(q-1) for prime q

Proof. Firstly, in \mathbb{Z}_p , the equation $x^d - 1 \equiv 0 \pmod{q}$ has at most d solution, while $x^{q-1} - 1 \equiv 0 \pmod{q}$ has exactly q - 1 solutions.

Since d|(q-1), we can factorize $x^{q-1} = x^d P(x)$, where polynomial P(x) has degree (q-1-d), which has at most (q-d-1) solutions.

Thus, P(x) and $x^d - 1$ must have maximum number of solutions so that (q - d - 1) + d = (q - 1) can hold. So $x^d - 1 \equiv 0 \pmod{q}$ has exactly d solutions.

Lemma 3. Let G be a finite group and p is a prime dividing its order. Then $n_p \equiv -1 \mod p$, where n_p denotes the number of elements of order p.

Proof. Consider a subset $X \subseteq G^p$ defined by $X = \{(g_1, g_2, \dots, g_p) \in G^p : g_1g_2 \cdots g_p = e\}$. Since $|G^p| = |G|^p$, and $|X| = |G|^{p-1}$. Let $H = C_p = \langle \xi \rangle$, consider the action of H on X by

$$\xi \star (g_1, g_2, \dots, g_p) = (g_2, g_3, \dots, g_p, g_1)$$

This is an action, indeed, if $g_1g_2\cdots g_p = e$, then $g_2g_3\cdots g_pg_1 = g_1^{-1}eg_1 = e$. For any element $x \in X$, by Orbit-Stabilizer Theorem, $p = |H| = |H_x||H \star x|$. Since p is prime, every orbit has to have either size 1 or size p, also the orbits sum to $|X| = |G|^{p-1}$ which is divisible by p. So the number of size 1 orbits must be divisible by p, thus at least 2. All such orbits of size 1 must be in the form (g, g, \ldots, p) . In particular, apart from (e, e, \ldots, e) , there's a bijection between an element of order p such a tuple. Therefore, $n_p \equiv -1 \mod p$

Lemma 4. $(p-1) \mid n_p$, where p, n_p are the same definition in lemma 1.

Proof. Consider the subgroups S_1, S_2, \ldots of order p in group G. We must have $S_i \cap S_j = e$ for $i \neq j$. The result follows.

We first prove the easy direction of Theorem 1, which only requires lemma 2 and a proper counterexample.

Proposition 1. For groups of order pq, if p|(q-1), then the group cannot be determined.

Proof. By lemma 2, $l^p - 1 \equiv 0 \pmod{q}$ has exactly p solutions. In particular, it has a solution $t \neq 1$. Consider the group representation $\langle h, k | h^p = k^q = e, h^{-1}kh = k^t$

(a) It's a group of order pq. To prove this, firstly notice that we can write equivalent of each element as $h^i k^j, 0 \le i < p, 0 \le j < q$. If $h^a k^b = h^c k^d$, then $h^{a-c} = k^{d-b} \Rightarrow p \mid (a-c)q \Rightarrow p \mid (a-c)$. Similarly $b \equiv d \pmod{q}$. So these pq elements are distinct.

(b) It's non-abelian. Recall that $t^p - 1 \equiv 0 \pmod{q}$ $(hk)(h^pk) = h^{p+1}k^{t^p+1} = h^{p+1}k^2, (h^pk)(hk) = h^{p+1}k^{t+1}$. Since $t \neq 1$, we are done.

The other direction should use lemma 1, lemma 2 and lemma 3. See proposition 2.

Proposition 2. For groups of order pq, if $p \nmid (q-1)$, then the group must be unique up to isomorphism (i.e. cyclic).

Proof. By lemma 3, there exists subgroup H, K such that |H| = q, $H = \langle h \rangle$ and |K| = p, $K = \langle k \rangle$. By lemma 1, we know H is normal in G. so $k^{-1}hk = h^l$ for some l. We must have $h = k^{-p}hk^p = k^{-(p-1)}h^lk^{p-1} = k^{-(p-2)}(k^{-1}hk)^lk^{p-2} = k^{-(p-1)}h^{l^2}k^{=} \dots = k^{l^p}$. Thus, $l^p \equiv 1 \pmod{q}$. Since $p \nmid (q-1)$, we must have l = 1. This is because by Bezout Theorem, $(\exists x, y)xp + y(q-1) = 1$, so $l = l^{xp+y(q-1)} \equiv (l^p)^x (l^{(q-1)})^y \equiv 1 \pmod{q}$. So the group must be abelian, hence cyclic.

What about lemma 4? Well, when I first start approaching proposition 2, I used another fairly surprising way, which is about counting the order of elements.

Proof. By lemma 3&4, we can write $n_p = k_1p - 1$, $n_q = k_2(q - 1)$ for some $k_1, k_2 \in \mathbb{Z}$. Suppose the group is not cyclic. Then each element has order 1, p or q. Thus

$$1 + k_1 p - 1 + k_2 (q - 1) \equiv 0 \pmod{p}$$

So $p \mid k_2$ as $p \nmid q - 1$. Clearly $k_2 \neq 0$, so $k_2 = p, k_1 = 1$ Similarly, if we write $n_p = k_3(p-1), n_q = k_4q - 1$, we have $q \mid k_3$. So $k_3 = q$. Now $n_p = pq - q = p - 1 \rightarrow q = 1$, which is a contradiction.

Combine Proposition 1 and Proposition 2, Theorem 1 is proved. We now show a direct corollary of Theorem 1.

Corollary 1. For a group G with order n, if G is unique, then $gcd(n, \phi(n)) = 1$.

Proof. Firstly, n must be square-free. Otherwise, Write $n = p^{\alpha}m$, $C_p \times C_p \times \ldots \times C_m$ is not isomorphic to C_n

So write $n = p_1 p_2 \dots p_m$. If $gcd(n, \phi(n)) \ge 1$, we must have $p_i \mid (p_j - 1)$ for some i, j.

By the above construction of non-abelian group (call it H of order $p_i p_j$ in the proof of proposition 1, we know $H \times C_{\frac{n}{p_i p_j}}$ is not isomorphic to C_n